
Introduction

 This document gives coding conventions for the Python code comprising the
 standard library in the main Python distributio n. Please see the
 companion informational PEP describing style gu idelines for the C code in
 the C implementation of Python[1].

 This document was adapted from Guido's original Python Style Guide
 essay[2], with some additions from Barry's styl e guide[5]. Where there's
 conflict, Guido's style rules for the purposes of this PEP. This PEP may
 still be incomplete (in fact, it may never be f inished <wink>).

A Foolish Consistency is the Hobgoblin of Little Minds

 One of Guido's key insights is that code is rea d much more often than it
 is written. The guidelines provided here are i ntended to improve the
 readability of code and make it consistent acro ss the wide spectrum of
 Python code. As PEP 20 [6] says, "Readability counts".

 A style guide is about consistency. Consistenc y with this style guide is
 important. Consistency within a project is mor e important. Consistency
 within one module or function is most important .

 But most importantly: know when to be inconsist ent -- sometimes the style
 guide just doesn't apply. When in doubt, use y our best judgment. Look
 at other examples and decide what looks best. And don't hesitate to ask!

 Two good reasons to break a particular rule:

 (1) When applying the rule would make the code less readable, even for
 someone who is used to reading code that fo llows the rules.

 (2) To be consistent with surrounding code that also breaks it (maybe for
 historic reasons) -- although this is also an opportunity to clean up
 someone else's mess (in true XP style).

Code lay-out

 Indentation

 Use 4 spaces per indentation level.

 For really old code that you don't want to mess up, you can continue to
 use 8-space tabs.

 Continuation lines should align wrapped element s either vertically using
 Python's implicit line joining inside parenthes es, brackets and braces, or
 using a hanging indent. When using a hanging i ndent the following
 considerations should be applied; there should be no arguments on the
 first line and further indentation should be us ed to clearly distinguish
 itself as a continuation line.

 Yes: # Aligned with opening delimiter
 foo = long_function_name(var_one, var_two ,
 var_three, var_f our)

 # More indentation included to distinguis h this from the rest.
 def long_function_name(
 var_one, var_two, var_three,
 var_four):
 print(var_one)

 No: # Arguments on first line forbidden when not using vertical alignment

 foo = long_function_name(var_one, var_two ,
 var_three, var_four)

 # Further indentation required as indenta tion is not distinguishable
 def long_function_name(
 var_one, var_two, var_three,
 var_four):
 print(var_one)

 Optional:
 # Extra indentation is not necessary.
 foo = long_function_name(
 var_one, var_two,
 var_three, var_four)

 Tabs or Spaces?

 Never mix tabs and spaces.

 The most popular way of indenting Python is wit h spaces only. The
 second-most popular way is with tabs only. Cod e indented with a mixture
 of tabs and spaces should be converted to using spaces exclusively. When
 invoking the Python command line interpreter wi th the -t option, it issues
 warnings about code that illegally mixes tabs a nd spaces. When using -tt
 these warnings become errors. These options ar e highly recommended!

 For new projects, spaces-only are strongly reco mmended over tabs. Most
 editors have features that make this easy to do .

 Maximum Line Length

 Limit all lines to a maximum of 79 characters.

 There are still many devices around that are li mited to 80 character
 lines; plus, limiting windows to 80 characters makes it possible to have
 several windows side-by-side. The default wrap ping on such devices
 disrupts the visual structure of the code, maki ng it more difficult to
 understand. Therefore, please limit all lines to a maximum of 79
 characters. For flowing long blocks of text (d ocstrings or comments),
 limiting the length to 72 characters is recomme nded.

 The preferred way of wrapping long lines is by using Python's implied line
 continuation inside parentheses, brackets and b races. Long lines can be
 broken over multiple lines by wrapping expressi ons in parentheses. These
 should be used in preference to using a backsla sh for line continuation.
 Make sure to indent the continued line appropri ately. The preferred place
 to break around a binary operator is *after* th e operator, not before it.
 Some examples:

 class Rectangle(Blob):

 def __init__(self, width, height,
 color='black', emphasis=None, highlight=0):
 if (width == 0 and height == 0 and
 color == 'red' and emphasis == 'str ong' or
 highlight > 100):
 raise ValueError("sorry, you lose")
 if width == 0 and height == 0 and (colo r == 'red' or
 emph asis is None):
 raise ValueError("I don't think so -- values are %s, %s" %
 (width, height))
 Blob.__init__(self, width, height,
 color, emphasis, highligh t)

 Blank Lines

 Separate top-level function and class definitio ns with two blank lines.

 Method definitions inside a class are separated by a single blank line.

 Extra blank lines may be used (sparingly) to se parate groups of related
 functions. Blank lines may be omitted between a bunch of related
 one-liners (e.g. a set of dummy implementations).

 Use blank lines in functions, sparingly, to ind icate logical sections.

 Python accepts the control-L (i.e. ^L) form fee d character as whitespace;
 Many tools treat these characters as page separ ators, so you may use them
 to separate pages of related sections of your f ile. Note, some editors
 and web-based code viewers may not recognize co ntrol-L as a form feed
 and will show another glyph in its place.

 Encodings (PEP 263)

 Code in the core Python distribution should alw ays use the ASCII or
 Latin-1 encoding (a.k.a. ISO-8859-1). For Pyth on 3.0 and beyond,
 UTF-8 is preferred over Latin-1, see PEP 3120 .

 Files using ASCII should not have a coding cook ie. Latin-1 (or
 UTF-8) should only be used when a comment or do cstring needs to
 mention an author name that requires Latin-1; o therwise, using
 \x, \u or \U escapes is the preferred way to in clude non-ASCII
 data in string literals.

 For Python 3.0 and beyond, the following policy is prescribed for
 the standard library (see PEP 3131): All identifiers in the Python
 standard library MUST use ASCII-only identifier s, and SHOULD use
 English words wherever feasible (in many cases, abbreviations and
 technical terms are used which aren't English). In addition,
 string literals and comments must also be in AS CII. The only
 exceptions are (a) test cases testing the non-A SCII features, and
 (b) names of authors. Authors whose names are n ot based on the
 latin alphabet MUST provide a latin translitera tion of their
 names.

 Open source projects with a global audience are encouraged to
 adopt a similar policy.

Imports

 - Imports should usually be on separate lines, e.g.:

 Yes: import os
 import sys

 No: import sys, os

 it's okay to say this though:

 from subprocess import Popen, PIPE

 - Imports are always put at the top of the file , just after any module
 comments and docstrings, and before module gl obals and constants.

 Imports should be grouped in the following or der:

 1. standard library imports
 2. related third party imports
 3. local application/library specific imports

 You should put a blank line between each grou p of imports.

 Put any relevant __all__ specification after the imports.

 - Relative imports for intra-package imports ar e highly discouraged.
 Always use the absolute package path for all imports.

 Even now that PEP 328 [7] is fully implemented in Python 2.5,
 its style of explicit relative imports is act ively discouraged;
 absolute imports are more portable and usuall y more readable.

 - When importing a class from a class-containin g module, it's usually okay
 to spell this

 from myclass import MyClass
 from foo.bar.yourclass import YourClass

 If this spelling causes local name clashes, t hen spell them

 import myclass
 import foo.bar.yourclass

 and use "myclass.MyClass" and "foo.bar.yourcl ass.YourClass"

Whitespace in Expressions and Statements

 Pet Peeves

 Avoid extraneous whitespace in the following si tuations:

 - Immediately inside parentheses, brackets or b races.

 Yes: spam(ham[1], {eggs: 2})
 No: spam(ham[1], { eggs: 2 })

 - Immediately before a comma, semicolon, or col on:

 Yes: if x == 4: print x, y; x, y = y, x
 No: if x == 4 : print x , y ; x , y = y , x

 - Immediately before the open parenthesis that starts the argument
 list of a function call:

 Yes: spam(1)
 No: spam (1)

 - Immediately before the open parenthesis that starts an indexing or
 slicing:

 Yes: dict['key'] = list[index]
 No: dict ['key'] = list [index]

 - More than one space around an assignment (or other) operator to
 align it with another.

 Yes:

 x = 1
 y = 2
 long_variable = 3

 No:

 x = 1
 y = 2
 long_variable = 3

 Other Recommendations

 - Always surround these binary operators with a single space on
 either side: assignment (=), augmented assign ment (+=, -= etc.),
 comparisons (==, <, >, !=, <>, <=, >=, in, no t in, is, is not),
 Booleans (and, or, not).

 - Use spaces around arithmetic operators:

 Yes:

 i = i + 1
 submitted += 1
 x = x * 2 - 1
 hypot2 = x * x + y * y
 c = (a + b) * (a - b)

 No:

 i=i+1
 submitted +=1
 x = x*2 - 1
 hypot2 = x*x + y*y
 c = (a+b) * (a-b)

 - Don't use spaces around the '=' sign when use d to indicate a
 keyword argument or a default parameter value .

 Yes:

 def complex(real, imag=0.0):
 return magic(r=real, i=imag)

 No:

 def complex(real, imag = 0.0):
 return magic(r = real, i = imag)

 - Compound statements (multiple statements on t he same line) are
 generally discouraged.

 Yes:

 if foo == 'blah':
 do_blah_thing()
 do_one()
 do_two()
 do_three()

 Rather not:

 if foo == 'blah': do_blah_thing()
 do_one(); do_two(); do_three()

 - While sometimes it's okay to put an if/for/wh ile with a small
 body on the same line, never do this for mult i-clause
 statements. Also avoid folding such long lin es!

 Rather not:

 if foo == 'blah': do_blah_thing()
 for x in lst: total += x
 while t < 10: t = delay()

 Definitely not:

 if foo == 'blah': do_blah_thing()
 else: do_non_blah_thing()

 try: something()
 finally: cleanup()

 do_one(); do_two(); do_three(long, argume nt,
 list, like, this)

 if foo == 'blah': one(); two(); three()

Comments

 Comments that contradict the code are worse tha n no comments. Always make
 a priority of keeping the comments up-to-date w hen the code changes!

 Comments should be complete sentences. If a co mment is a phrase or
 sentence, its first word should be capitalized, unless it is an identifier
 that begins with a lower case letter (never alt er the case of
 identifiers!).

 If a comment is short, the period at the end ca n be omitted. Block
 comments generally consist of one or more parag raphs built out of complete
 sentences, and each sentence should end in a pe riod.

 You should use two spaces after a sentence-endi ng period.

 When writing English, Strunk and White apply.

 Python coders from non-English speaking countri es: please write
 your comments in English, unless you are 120% s ure that the code
 will never be read by people who don't speak yo ur language.

 Block Comments

 Block comments generally apply to some (or all) code that follows them,
 and are indented to the same level as that code . Each line of a block
 comment starts with a # and a single space (unl ess it is indented text
 inside the comment).

 Paragraphs inside a block comment are separated by a line containing a
 single #.

 Inline Comments

 Use inline comments sparingly.

 An inline comment is a comment on the same line as a statement. Inline
 comments should be separated by at least two sp aces from the statement.
 They should start with a # and a single space.

 Inline comments are unnecessary and in fact dis tracting if they state
 the obvious. Don't do this:

 x = x + 1 # Increment x

 But sometimes, this is useful:

 x = x + 1 # Compensate for border

Documentation Strings

 Conventions for writing good documentation stri ngs (a.k.a. "docstrings")
 are immortalized in PEP 257 [3].

 - Write docstrings for all public modules, func tions, classes, and
 methods. Docstrings are not necessary for no n-public methods, but you
 should have a comment that describes what the method does. This comment
 should appear after the "def" line.

 - PEP 257 describes good docstring conventions. Note that m ost
 importantly, the """ that ends a multiline do cstring should be on a line
 by itself, and preferably preceded by a blank line, e.g.:

 """Return a foobang

 Optional plotz says to frobnicate the bizbaz first.

 """

 - For one liner docstrings, it's okay to keep t he closing """ on the same
 line.

Version Bookkeeping

 If you have to have Subversion, CVS, or RCS cru d in your source file, do
 it as follows.

 __version__ = "$Revision: 00f8e3bb1197 $"
 # $Source$

 These lines should be included after the module 's docstring, before any
 other code, separated by a blank line above and below.

Naming Conventions

 The naming conventions of Python's library are a bit of a mess, so we'll
 never get this completely consistent -- neverth eless, here are the
 currently recommended naming standards. New mo dules and packages
 (including third party frameworks) should be wr itten to these standards,
 but where an existing library has a different s tyle, internal consistency
 is preferred.

 Descriptive: Naming Styles

 There are a lot of different naming styles. It helps to be able to
 recognize what naming style is being used, inde pendently from what they
 are used for.

 The following naming styles are commonly distin guished:

 - b (single lowercase letter)

 - B (single uppercase letter)

 - lowercase

 - lower_case_with_underscores

 - UPPERCASE

 - UPPER_CASE_WITH_UNDERSCORES

 - CapitalizedWords (or CapWords, or CamelCase - - so named because
 of the bumpy look of its letters[4]). This i s also sometimes known as
 StudlyCaps.

 Note: When using abbreviations in CapWords, c apitalize all the letters
 of the abbreviation. Thus HTTPServerError is better than
 HttpServerError.

 - mixedCase (differs from CapitalizedWords by i nitial lowercase
 character!)

 - Capitalized_Words_With_Underscores (ugly!)

 There's also the style of using a short unique prefix to group related

 names together. This is not used much in Pytho n, but it is mentioned for
 completeness. For example, the os.stat() funct ion returns a tuple whose
 items traditionally have names like st_mode, st _size, st_mtime and so on.
 (This is done to emphasize the correspondence w ith the fields of the
 POSIX system call struct, which helps programme rs familiar with that.)

 The X11 library uses a leading X for all its pu blic functions. In Python,
 this style is generally deemed unnecessary beca use attribute and method
 names are prefixed with an object, and function names are prefixed with a
 module name.

 In addition, the following special forms using leading or trailing
 underscores are recognized (these can generally be combined with any case
 convention):

 - _single_leading_underscore: weak "internal us e" indicator. E.g. "from M
 import *" does not import objects whose name starts with an underscore.

 - single_trailing_underscore_: used by conventi on to avoid conflicts with
 Python keyword, e.g.

 Tkinter.Toplevel(master, class_='ClassName')

 - __double_leading_underscore: when naming a cl ass attribute, invokes name
 mangling (inside class FooBar, __boo becomes _FooBar__boo; see below).

 - __double_leading_and_trailing_underscore__: " magic" objects or
 attributes that live in user-controlled names paces. E.g. __init__,
 __import__ or __file__. Never invent such na mes; only use them
 as documented.

 Prescriptive: Naming Conventions

 Names to Avoid

 Never use the characters `l' (lowercase lette r el), `O' (uppercase
 letter oh), or `I' (uppercase letter eye) as single character variable
 names.

 In some fonts, these characters are indisting uishable from the numerals
 one and zero. When tempted to use `l', use ` L' instead.

 Package and Module Names

 Modules should have short, all-lowercase name s. Underscores can be used
 in the module name if it improves readability . Python packages should
 also have short, all-lowercase names, althoug h the use of underscores is
 discouraged.

 Since module names are mapped to file names, and some file systems are
 case insensitive and truncate long names, it is important that module
 names be chosen to be fairly short -- this wo n't be a problem on Unix,
 but it may be a problem when the code is tran sported to older Mac or
 Windows versions, or DOS.

 When an extension module written in C or C++ has an accompanying Python
 module that provides a higher level (e.g. mor e object oriented)
 interface, the C/C++ module has a leading und erscore (e.g. _socket).

 Class Names

 Almost without exception, class names use the CapWords convention.
 Classes for internal use have a leading under score in addition.

 Exception Names

 Because exceptions should be classes, the cla ss naming convention
 applies here. However, you should use the su ffix "Error" on your
 exception names (if the exception actually is an error).

 Global Variable Names

 (Let's hope that these variables are meant fo r use inside one module
 only.) The conventions are about the same as those for functions.

 Modules that are designed for use via "from M import *" should use the
 __all__ mechanism to prevent exporting global s, or use the older
 convention of prefixing such globals with an underscore (which you might
 want to do to indicate these globals are "mod ule non-public").

 Function Names

 Function names should be lowercase, with word s separated by underscores
 as necessary to improve readability.

 mixedCase is allowed only in contexts where t hat's already the
 prevailing style (e.g. threading.py), to reta in backwards compatibility.

 Function and method arguments

 Always use 'self' for the first argument to i nstance methods.

 Always use 'cls' for the first argument to cl ass methods.

 If a function argument's name clashes with a reserved keyword, it is
 generally better to append a single trailing underscore rather than use
 an abbreviation or spelling corruption. Thus "print_" is better than
 "prnt". (Perhaps better is to avoid such cla shes by using a synonym.)

 Method Names and Instance Variables

 Use the function naming rules: lowercase with words separated by
 underscores as necessary to improve readabili ty.

 Use one leading underscore only for non-publi c methods and instance
 variables.

 To avoid name clashes with subclasses, use tw o leading underscores to
 invoke Python's name mangling rules.

 Python mangles these names with the class nam e: if class Foo has an
 attribute named __a, it cannot be accessed by Foo.__a. (An insistent
 user could still gain access by calling Foo._ Foo__a.) Generally, double
 leading underscores should be used only to av oid name conflicts with
 attributes in classes designed to be subclass ed.

 Note: there is some controversy about the use of __names (see below).

 Constants

 Constants are usually defined on a module le vel and written in all
 capital letters with underscores separating words. Examples include
 MAX_OVERFLOW and TOTAL.

 Designing for inheritance

 Always decide whether a class's methods and i nstance variables
 (collectively: "attributes") should be public or non-public. If in
 doubt, choose non-public; it's easier to make it public later than to
 make a public attribute non-public.

 Public attributes are those that you expect u nrelated clients of your
 class to use, with your commitment to avoid b ackward incompatible
 changes. Non-public attributes are those tha t are not intended to be
 used by third parties; you make no guarantees that non-public attributes
 won't change or even be removed.

 We don't use the term "private" here, since n o attribute is really

 private in Python (without a generally unnece ssary amount of work).

 Another category of attributes are those that are part of the "subclass
 API" (often called "protected" in other langu ages). Some classes are
 designed to be inherited from, either to exte nd or modify aspects of the
 class's behavior. When designing such a clas s, take care to make
 explicit decisions about which attributes are public, which are part of
 the subclass API, and which are truly only to be used by your base
 class.

 With this in mind, here are the Pythonic guid elines:

 - Public attributes should have no leading un derscores.

 - If your public attribute name collides with a reserved keyword, append
 a single trailing underscore to your attrib ute name. This is
 preferable to an abbreviation or corrupted spelling. (However,
 notwithstanding this rule, 'cls' is the pre ferred spelling for any
 variable or argument which is known to be a class, especially the
 first argument to a class method.)

 Note 1: See the argument name recommendatio n above for class methods.

 - For simple public data attributes, it is be st to expose just the
 attribute name, without complicated accesso r/mutator methods. Keep in
 mind that Python provides an easy path to f uture enhancement, should
 you find that a simple data attribute needs to grow functional
 behavior. In that case, use properties to hide functional
 implementation behind simple data attribute access syntax.

 Note 1: Properties only work on new-style c lasses.

 Note 2: Try to keep the functional behavior side-effect free, although
 side-effects such as caching are generally fine.

 Note 3: Avoid using properties for computat ionally expensive
 operations; the attribute notation makes th e caller believe
 that access is (relatively) cheap.

 - If your class is intended to be subclassed, and you have attributes
 that you do not want subclasses to use, con sider naming them with
 double leading underscores and no trailing underscores. This invokes
 Python's name mangling algorithm, where the name of the class is
 mangled into the attribute name. This help s avoid attribute name
 collisions should subclasses inadvertently contain attributes with the
 same name.

 Note 1: Note that only the simple class nam e is used in the mangled
 name, so if a subclass chooses both the sam e class name and attribute
 name, you can still get name collisions.

 Note 2: Name mangling can make certain uses , such as debugging and
 __getattr__(), less convenient. However th e name mangling algorithm
 is well documented and easy to perform manu ally.

 Note 3: Not everyone likes name mangling. Try to balance the
 need to avoid accidental name clashes with potential use by
 advanced callers.

Programming Recommendations

 - Code should be written in a way that does not disadvantage other
 implementations of Python (PyPy, Jython, Iron Python, Pyrex, Psyco,
 and such).

 For example, do not rely on CPython's efficie nt implementation of
 in-place string concatenation for statements in the form a+=b or a=a+b.

 Those statements run more slowly in Jython. In performance sensitive
 parts of the library, the ''.join() form shou ld be used instead. This
 will ensure that concatenation occurs in line ar time across various
 implementations.

 - Comparisons to singletons like None should al ways be done with
 'is' or 'is not', never the equality operator s.

 Also, beware of writing "if x" when you reall y mean "if x is not None"
 -- e.g. when testing whether a variable or ar gument that defaults to
 None was set to some other value. The other value might have a type
 (such as a container) that could be false in a boolean context!

 - When implementing ordering operations with ri ch comparisons, it is best to
 implement all six operations (__eq__, __ne__, __lt__, __le__, __gt__,
 __ge__) rather than relying on other code to only exercise a particular
 comparison.

 To minimize the effort involved, the functool s.total_ordering() decorator
 provides a tool to generate missing compariso n methods.

 PEP 207 indicates that reflexivity rules *are* assumed by Python. Thus,
 the interpreter may swap y>x with x<y, y>=x w ith x<=y, and may swap the
 arguments of x==y and x!=y. The sort() and m in() operations are
 guaranteed to use the < operator and the max() function uses the >
 operator. However, it is best to implement a ll six operations so that
 confusion doesn't arise in other contexts.

 - Use class-based exceptions.

 String exceptions in new code are forbidden, because this language
 feature is being removed in Python 2.6.

 Modules or packages should define their own d omain-specific base
 exception class, which should be subclassed f rom the built-in Exception
 class. Always include a class docstring. E. g.:

 class MessageError(Exception):
 """Base class for errors in the email p ackage."""

 Class naming conventions apply here, although you should add the suffix
 "Error" to your exception classes, if the exc eption is an error.
 Non-error exceptions need no special suffix.

 - When raising an exception, use "raise ValueEr ror('message')" instead of
 the older form "raise ValueError, 'message'".

 The paren-using form is preferred because whe n the exception arguments
 are long or include string formatting, you do n't need to use line
 continuation characters thanks to the contain ing parentheses. The older
 form will be removed in Python 3000.

 - When catching exceptions, mention specific ex ceptions
 whenever possible instead of using a bare 'ex cept:' clause.

 For example, use:

 try:
 import platform_specific_module
 except ImportError:
 platform_specific_module = None

 A bare 'except:' clause will catch SystemExit and KeyboardInterrupt
 exceptions, making it harder to interrupt a p rogram with Control-C,
 and can disguise other problems. If you want to catch all
 exceptions that signal program errors, use 'e xcept Exception:'.

 A good rule of thumb is to limit use of bare 'except' clauses to two
 cases:

 1) If the exception handler will be printi ng out or logging
 the traceback; at least the user will b e aware that an
 error has occurred.

 2) If the code needs to do some cleanup wo rk, but then lets
 the exception propagate upwards with 'r aise'.
 'try...finally' is a better way to hand le this case.

 - Additionally, for all try/except clauses, lim it the 'try' clause
 to the absolute minimum amount of code necess ary. Again, this
 avoids masking bugs.

 Yes:

 try:
 value = collection[key]
 except KeyError:
 return key_not_found(key)
 else:
 return handle_value(value)

 No:

 try:
 # Too broad!
 return handle_value(collection[key])
 except KeyError:
 # Will also catch KeyError raised by handle_value()
 return key_not_found(key)

 - Use string methods instead of the string modu le.

 String methods are always much faster and sha re the same API with
 unicode strings. Override this rule if backw ard compatibility with
 Pythons older than 2.0 is required.

 - Use ''.startswith() and ''.endswith() instead of string slicing to check
 for prefixes or suffixes.

 startswith() and endswith() are cleaner and l ess error prone. For
 example:

 Yes: if foo.startswith('bar'):

 No: if foo[:3] == 'bar':

 The exception is if your code must work with Python 1.5.2 (but let's
 hope not!).

 - Object type comparisons should always use isi nstance() instead
 of comparing types directly.

 Yes: if isinstance(obj, int):

 No: if type(obj) is type(1):

 When checking if an object is a string, keep in mind that it might be a
 unicode string too! In Python 2.3, str and u nicode have a common base
 class, basestring, so you can do:

 if isinstance(obj, basestring):

 - For sequences, (strings, lists, tuples), use the fact that empty
 sequences are false.

 Yes: if not seq:
 if seq:

 No: if len(seq)
 if not len(seq)

 - Don't write string literals that rely on sign ificant trailing
 whitespace. Such trailing whitespace is visu ally indistinguishable and
 some editors (or more recently, reindent.py) will trim them.

 - Don't compare boolean values to True or False using ==

 Yes: if greeting:

 No: if greeting == True:

 Worse: if greeting is True:

Rules that apply only to the standard library

 - Do not use function type annotations in the s tandard library.
 These are reserved for users and third-party modules. See
 PEP 3107 and the bug 10899 for details.

References

 [1] PEP 7 , Style Guide for C Code, van Rossum

 [2] http://www.python.org/doc/essays/styleguide.html

 [3] PEP 257 , Docstring Conventions, Goodger, van Rossum

 [4] http://www.wikipedia.com/wiki/CamelCase

 [5] Barry's GNU Mailman style guide
 http://barry.warsaw.us/software/STYLEGUIDE.txt

 [6] PEP 20 , The Zen of Python

 [7] PEP 328 , Imports: Multi-Line and Absolute/Relative

Copyright

 This document has been placed in the public dom ain.

